موقع كرة السلة العاصفة

الأعدادالمركبةشرحشاملومبسط

الأعدادالمركبةشرحشاملومبسط << ريلز << الصفحة الرئيسية الموقع الحالي

مقدمةعنالأعدادالمركبة

الأعدادالمركبة(الأعدادالعقدية)هيأعدادرياضيةتمثلامتدادًاللأعدادالحقيقية،وتتكونمنجزئين:جزءحقيقيوجزءتخيلي.تُكتبالأعدادالمركبةعادةًعلىالصورة:الأعدادالمركبةشرحشاملومبسط

z=a+bi

الأعدادالمركبةشرحشاملومبسط

الأعدادالمركبةشرحشاملومبسط

حيث:
-aهوالجزءالحقيقي
-bهوالجزءالتخيلي
-iهيالوحدةالتخيلية،حيثi²=-1

الأعدادالمركبةشرحشاملومبسط

الأعدادالمركبةشرحشاملومبسط

لماذانستخدمالأعدادالمركبة؟

ظهرتالحاجةإلىالأعدادالمركبةلحلالمعادلاتالتيلايوجدلهاحلفيمجموعةالأعدادالحقيقية،مثلالمعادلة:

الأعدادالمركبةشرحشاملومبسط

الأعدادالمركبةشرحشاملومبسط

x²+1=0

الأعدادالمركبةشرحشاملومبسط

حيثلايوجدعددحقيقييحققهذهالمعادلة،لكنباستخدامالوحدةالتخيليةi،يصبحالحلx=±i.

الأعدادالمركبةشرحشاملومبسط

خصائصالأعدادالمركبة

  1. الجمعوالطرح:
    عندجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل.
    مثال:
    (3+2i)+(1+4i)=(3+1)+(2i+4i)=4+6i

    الأعدادالمركبةشرحشاملومبسط
  2. الضرب:
    عندضربعددينمركبين،نستخدمخاصيةالتوزيعونأخذفيالاعتبارأنi²=-1.
    مثال:
    (2+3i)×(1+2i)=2×1+2×2i+3i×1+3i×2i=2+4i+3i+6i²=2+7i+6(-1)=-4+7i

    الأعدادالمركبةشرحشاملومبسط
  3. القسمة:
    لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام(يتمتغييرإشارةالجزءالتخيلي).
    مثال:
    (3+4i)/(1+2i)=[(3+4i)(1-2i)]/[(1+2i)(1-2i)]

    الأعدادالمركبةشرحشاملومبسط

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبz=a+biكنقطةفيالمستوىالإحداثي،حيث:
-المحورالأفقييمثلالجزءالحقيقي(a).
-المحورالرأسييمثلالجزءالتخيلي(b).

الأعدادالمركبةشرحشاملومبسط

هذاالتمثيليُعرفباسممستوىالأعدادالمركبةأومستوىأرغاند.

الأعدادالمركبةشرحشاملومبسط

القيمةالمطلقةوالزاوية

لكلعددمركبz=a+bi،يمكنحساب:
1.القيمةالمطلقة(المقياس):
|z|=√(a²+b²)
2.الزاوية(الطور):
θ=arctan(b/a)

الأعدادالمركبةشرحشاملومبسط

تطبيقاتالأعدادالمركبة

تستخدمالأعدادالمركبةفيالعديدمنالمجالات،مثل:
-الهندسةالكهربائية:تحليلالدوائرالكهربائية.
-الفيزياء:دراسةالموجاتوالاهتزازات.
-الرسوماتالحاسوبية:تمثيلالتحولاتالهندسية.

الأعدادالمركبةشرحشاملومبسط

الخاتمة

الأعدادالمركبةهيأداةرياضيةقويةتُستخدمفيالعديدمنالتطبيقاتالعلميةوالهندسية.بفهمأساسياتهاوخصائصها،يمكنحلمشكلاتمعقدةلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.

الأعدادالمركبةشرحشاملومبسط

مقدمةعنالأعدادالمركبة

الأعدادالمركبة(ComplexNumbers)هيأعدادتتكونمنجزأين:جزءحقيقيوجزءتخيلي.يمكنالتعبيرعنهابالصيغةالعامةa+bi،حيث:
-aهوالجزءالحقيقي
-bهوالجزءالتخيلي
-iهيالوحدةالتخيلية،حيثi²=-1

الأعدادالمركبةشرحشاملومبسط

تعتبرالأعدادالمركبةامتدادًاللأعدادالحقيقية،وتستخدمفيالعديدمنالمجالاتمثلالهندسةالكهربائية،الفيزياء،والرياضياتالمتقدمة.

الأعدادالمركبةشرحشاملومبسط

خصائصالأعدادالمركبة

  1. الجمعوالطرح:عندجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل.
    مثال:
    (3+2i)+(1+4i)=(3+1)+(2+4)i=4+6i

    الأعدادالمركبةشرحشاملومبسط
  2. الضرب:عندضربعددينمركبين،نستخدمخاصيةالتوزيعونأخذفيالاعتبارأنi²=-1.
    مثال:
    (2+3i)×(1+2i)=2×1+2×2i+3i×1+3i×2i=2+4i+3i+6i²=2+7i+6(-1)=-4+7i

    الأعدادالمركبةشرحشاملومبسط
  3. القسمة:لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام(Conjugate)لتبسيطالمقام.
    مثال:
    (3+4i)/(1+2i)=[(3+4i)(1-2i)]/[(1+2i)(1-2i)]=(3-6i+4i-8i²)/(1-4i²)=(11-2i)/5=2.2-0.4i

    الأعدادالمركبةشرحشاملومبسط

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالإحداثي(المستوىالمركب)،حيث:
-المحورالأفقييمثلالجزءالحقيقي(a)
-المحورالرأسييمثلالجزءالتخيلي(b)

الأعدادالمركبةشرحشاملومبسط

هذاالتمثيليساعدفيفهمالعملياتمثلالجمعوالضربهندسيًا.

الأعدادالمركبةشرحشاملومبسط

تطبيقاتالأعدادالمركبة

  1. الهندسةالكهربائية:تستخدملتحليلدوائرالتيارالمتردد(ACCircuits).
  2. معالجةالإشارات:تساعدفيتحليلالإشاراتوالموجات.
  3. الميكانيكاالكمية:تلعبدورًاأساسيًافيمعادلاتميكانيكاالكم.

الخلاصة

الأعدادالمركبةأداةقويةفيالرياضياتوالعلوم،تسمحبحلمعادلاتلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.بفهمأساسياتهاوتطبيقاتها،يمكنالاستفادةمنهافيمجالاتمتعددة.

الأعدادالمركبةشرحشاملومبسط

مقدمةعنالأعدادالمركبة

الأعدادالمركبة(الأعدادالعقدية)هيأعدادتتكونمنجزأين:جزءحقيقيوجزءتخيلي.تُكتبعادةًبالصيغةa+bi،حيث:
-aهوالجزءالحقيقي
-bهوالجزءالتخيلي
-iهيالوحدةالتخيلية،حيثi²=-1

الأعدادالمركبةشرحشاملومبسط

تعتبرالأعدادالمركبةامتدادًاللأعدادالحقيقيةوتلعبدورًاأساسيًافيالعديدمنالمجالاتمثلالهندسةالكهربائية،الفيزياء،ومعالجةالإشارات.

الأعدادالمركبةشرحشاملومبسط

خصائصالأعدادالمركبة

  1. الجمعوالطرح:
    عندجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل.
    مثال:
    (3+2i)+(1+4i)=(3+1)+(2+4)i=4+6i

    الأعدادالمركبةشرحشاملومبسط
  2. الضرب:
    لضربعددينمركبين،نستخدمخاصيةالتوزيعونأخذفيالاعتبارأنi²=-1.
    مثال:
    (2+3i)×(1+2i)=2×1+2×2i+3i×1+3i×2i=2+4i+3i+6i²=-4+7i

    الأعدادالمركبةشرحشاملومبسط
  3. القسمة:
    لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقام(يتمعكسإشارةالجزءالتخيلي).
    مثال:
    (1+i)/(1-i)=[(1+i)(1+i)]/[(1-i)(1+i)]=(1+2i+i²)/(1-i²)=i

    الأعدادالمركبةشرحشاملومبسط

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالإحداثي(مستوىالأعدادالمركبة)،حيث:
-المحورالأفقييمثلالجزءالحقيقي(a)
-المحورالرأسييمثلالجزءالتخيلي(b)

الأعدادالمركبةشرحشاملومبسط

هذاالتمثيليُعرفباسمتمثيلأرغاند،ويساعدفيفهمالعملياتالجبريةهندسيًا.

الأعدادالمركبةشرحشاملومبسط

الصيغةالقطبيةللأعدادالمركبة

يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:
z=r(cosθ+isinθ)
حيث:
-rهوالمقياس(طولالمتجهمنالأصلإلىالنقطة)
-θهيالزاوية(الزاويةبينالمتجهوالمحورالحقيقي)

الأعدادالمركبةشرحشاملومبسط

تُستخدمهذهالصيغةفيتبسيطعملياتالضربوالأسس.

الأعدادالمركبةشرحشاملومبسط

تطبيقاتالأعدادالمركبة

  1. الهندسةالكهربائية:تُستخدمفيتحليلدوائرالتيارالمتردد.
  2. معالجةالإشارات:تساعدفيتحليلالإشاراتباستخدامتحويلفورييه.
  3. الفيزياءالكمية:تلعبدورًاأساسيًافيمعادلاتميكانيكاالكم.

الخلاصة

الأعدادالمركبةأداةرياضيةقويةتُستخدمفيالعديدمنالتطبيقاتالعلميةوالهندسية.فهمهايتطلبإدراكالعلاقةبينالجزأينالحقيقيوالتخيلي،بالإضافةإلىتمثيلهاالهندسيوالقطبي.

الأعدادالمركبةشرحشاملومبسط

قراءات ذات صلة

نتائج مباريات دوري أبطال أوروبا رجالأحدث التطورات والمواجهات المثيرة

الزمالك والمصري اليوم بث مباشر لمباراة نارية في الدوري المصري

القرآن الكريم لايفتلاوات مباشرة من أشهر القراء

الطيارةاختراع غيّر وجه العالم

ملخص مباراة مصر وفرنسا لكرة اليد اليوم

الزمالك وانبي خلص كام كامقصة التنافس الأبدي في الكرة المصرية

الزمالك والأهلي يدًا بيد في بث مباشر تاريخي

الدوري المصري اليوم الجمعةمباريات مثيرة وتوقعات ساخنة