موقع كرة السلة العاصفة

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة(ComplexNumbers) << الانتقالات << الصفحة الرئيسية الموقع الحالي

الأعدادالمركبةهيأحدالمفاهيمالأساسيةفيالرياضيات،وتلعبدورًامهمًافيالعديدمنالتطبيقاتالعلميةوالهندسية.فيهذاالدرس،سنتعرفعلىتعريفالأعدادالمركبة،خصائصها،وكيفيةالتعاملمعهافيالعملياتالحسابيةالمختلفة.

1.ماهيالأعدادالمركبة؟

العددالمركبهوعدديمكنكتابتهعلىالصورة:
[z=a+bi]
حيث:
-aوbهماعددانحقيقيان.
-iهيالوحدةالتخيلية،وتحققالمعادلة(i^2=-1).

شرحدرسالأعدادالمركبة(ComplexNumbers)

يُسمىaبـ"الجزءالحقيقي"للعددالمركب،بينمايُسمىbبـ"الجزءالتخيلي".

شرحدرسالأعدادالمركبة(ComplexNumbers)

2.التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركب(z=a+bi)كنقطةفيالمستوىالإحداثي(يُسمىالمستوىالمركب)،حيث:
-المحورالأفقييمثلالجزءالحقيقي(a).
-المحورالرأسييمثلالجزءالتخيلي(b).

شرحدرسالأعدادالمركبة(ComplexNumbers)

3.العملياتالأساسيةعلىالأعدادالمركبة

أ.الجمعوالطرح

لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل:
[(a+bi)+(c+di)=(a+c)+(b+d)i]
[(a+bi)-(c+di)=(a-c)+(b-d)i]

ب.الضرب

يتمضربعددينمركبينباستخدامخاصيةالتوزيعومراعاةأن(i^2=-1):
[(a+bi)\cdot(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i]

ج.القسمة

لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقاملإزالةiمنالمقام:
[\frac{ a+bi}{ c+di}=\frac{ (a+bi)(c-di)}{ c^2+d^2}]

4.مرافقالعددالمركب

مرافقالعددالمركب(z=a+bi)هوالعدد(\overline{ z}=a-bi).منخصائصه:
-ضربالعددبمرافقهيعطيعددًاحقيقيًا:(z\cdot\overline{ z}=a^2+b^2).

5.تطبيقاتالأعدادالمركبة

تستخدمالأعدادالمركبةفي:
-تحليلالدوائرالكهربائية.
-معالجةالإشاراتوالموجات.
-الفيزياءالكميةوالهندسة.

6.خاتمة

الأعدادالمركبةتوسعمفهومالأعدادالحقيقيةوتقدمحلولًاللمعادلاتالتيلايوجدلهاحلفيمجموعةالأعدادالحقيقية(مثل(x^2+1=0)).بفهمهاجيدًا،يمكنتطبيقهافيمجالاتمتعددةلتحليلوحلالمشكلاتالمعقدة.

هذاالدرسيقدمأساسياتالأعدادالمركبة،وللتعمقأكثريمكندراسةتحويلاتفورييهوحسابالتفاضلوالتكاملفيالمستوىالمركب.

الأعدادالمركبةهيأحدالمفاهيمالأساسيةفيالرياضيات،وتلعبدورًامهمًافيالعديدمنالتطبيقاتالعلميةوالهندسية.فيهذاالدرس،سنتعرفعلىتعريفالأعدادالمركبة،وخصائصها،وكيفيةالتعاملمعهافيالعملياتالحسابيةالمختلفة.

1.ماهيالأعدادالمركبة؟

العددالمركبهوعدديمكنكتابتهعلىالصورة:
[z=a+bi]
حيث:
-(a)هوالجزءالحقيقيللعدد.
-(b)هوالجزءالتخيليللعدد.
-(i)هيالوحدةالتخيلية،وتُعرفبأنهاالجذرالتربيعيللعدد-1،أي:
[i^2=-1]

2.تمثيلالأعدادالمركبة

يمكنتمثيلالأعدادالمركبةبعدةطرق،منها:
-التمثيلالجبري:(z=a+bi)
-التمثيلالهندسي:يُمكنتمثيلالعددالمركبكنقطةفيالمستوىالإحداثي(مستوىالأعدادالمركبة)،حيثيمثلالمحورالأفقيالجزءالحقيقيوالمحورالرأسيالجزءالتخيلي.

3.العملياتالأساسيةعلىالأعدادالمركبة

أ)الجمعوالطرح

لجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل:
[(a+bi)+(c+di)=(a+c)+(b+d)i]
[(a+bi)-(c+di)=(a-c)+(b-d)i]

ب)الضرب

لضربعددينمركبين،نستخدمخاصيةالتوزيعونتذكرأن(i^2=-1):
[(a+bi)\cdot(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i]

ج)القسمة

لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقاملإزالةالجزءالتخيليمنالمقام:
[\frac{ a+bi}{ c+di}=\frac{ (a+bi)(c-di)}{ c^2+d^2}]

4.مرافقالعددالمركب

مرافقالعددالمركب(z=a+bi)هوالعدد(\overline{ z}=a-bi).منخصائصالمرافق:
-(z+\overline{ z}=2a)(عددحقيقي).
-(z\cdot\overline{ z}=a^2+b^2)(عددحقيقيموجب).

5.معيارالعددالمركب

معيارالعددالمركب(z=a+bi)هوالمسافةبينالنقطة((a,شرحدرسالأعدادالمركبةb))ونقطةالأصلفيالمستوىالمركب،ويُحسببالعلاقة:
[|z|=\sqrt{ a^2+b^2}]

6.تطبيقاتالأعدادالمركبة

تستخدمالأعدادالمركبةفيالعديدمنالمجالاتمثل:
-الهندسةالكهربائية:تحليلالدوائرالكهربائيةالتيتعملبالتيارالمتردد.
-الفيزياء:دراسةالموجاتوالاهتزازات.
-معالجةالإشارات:تحليلالإشاراتالرقميةوالتناظرية.

الخلاصة

الأعدادالمركبةتوسعمفهومالأعدادالحقيقيةوتسمحبحلمعادلاتلايمكنحلهافينطاقالأعدادالحقيقيةفقط.منخلالفهمأساسياتهاوتطبيقاتها،يمكنالاستفادةمنهافيالعديدمنالمجالاتالعلميةوالتقنية.

قراءات ذات صلة

نتائج مباريات منتخب مصر الأولمبي لكرة القدممسيرة مشرفة وتطلعات مستقبلية

أهداف المنتخب الأولمبي اليومطموحات وتحديات في المنافسات الدولية

أهداف الزمالك وطلائع الجيش اليومتحليل تكتيكي ومباراة مثيرة

أهداف مباراة الأهلي والزمالك اليومصراع العمالقة في الدوري المصري

ميعاد مباراة الزمالك والاهلي في السوبر الافريقي

أهداف مباراة الزمالك اليوم والبنك الأهليتحليل تكتيكي وتوقعات الأداء

أهداف مباراة الأهلي والزمالك اليوم يوتيوب - ملخص كامل وأبرز اللحظات

أهداف مباراة أرسنال اليومتحليل شامل لأداء الفريق وأبرز اللحظات