موقع كرة السلة العاصفة

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة(ComplexNumbers) << الانتقالات << الصفحة الرئيسية الموقع الحالي

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1

خصائصالأعدادالمركبة

  1. الجمعوالطرح:عندجمعأوطرحعددينمركبين،نجمع/نطرحالأجزاءالحقيقيةوالأجزاءالتخيليةكلعلىحدةمثال:(3+2i)+(1-4i)=(3+1)+(2-4)i=4-2i

    شرحدرسالأعدادالمركبة(ComplexNumbers)

  2. الضرب:نستخدمخاصيةالتوزيعمعتذكرأنi²=-1مثال:(2+3i)(1-2i)=2(1)+2(-2i)+3i(1)+3i(-2i)=2-4i+3i-6i²=2-i-6(-1)=8-i

    شرحدرسالأعدادالمركبة(ComplexNumbers)

  3. القسمة:نضربالبسطوالمقامفيمرافقالمقاملإزالةiمنالمقاممثال:(3+4i)/(1-2i)=[(3+4i)(1+2i)]/[(1-2i)(1+2i)]=(3+6i+4i+8i²)/(1+2i-2i-4i²)=(-5+10i)/5=-1+2i

    شرحدرسالأعدادالمركبة(ComplexNumbers)

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالإحداثي(مستوىأرجاند)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي

الصيغةالقطبيةللأعدادالمركبة

يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)للعددالمركب-θهيالزاوية(الوسع)التييصنعهامعالمحورالحقيقي

تطبيقاتالأعدادالمركبة

  1. فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
  2. فيمعالجةالإشاراتوالتحليلالطيفي
  3. فيميكانيكاالكموفيزياءالجسيمات
  4. فيالرسوماتالحاسوبيةوالتحريك

الخلاصة

الأعدادالمركبةهيأداةرياضيةقويةتوسعمفهومالأعدادالحقيقيةوتسمحبحلمعادلاتمثلx²+1=0التيليسلهاحلفيمجموعةالأعدادالحقيقية.فهمالأعدادالمركبةأساسيفيالعديدمنفروعالرياضياتوالعلوموالهندسة.

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1

الخصائصالأساسيةللأعدادالمركبة

  1. الجمعوالطرح:عندجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالأجزاءالتخيليةبشكلمنفصل.

مثال:(3+2i)+(1-4i)=(3+1)+(2-4)i=4-2i

  1. الضرب:نستخدمخاصيةالتوزيعونأخذفيالاعتبارأنi²=-1.

مثال:(2+3i)×(1-2i)=2×1+2×(-2i)+3i×1+3i×(-2i)=2-4i+3i-6i²=2-i-6(-1)=2-i+6=8-i

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالإحداثي(مستوىالأعدادالمركبة)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي

مرافقالعددالمركب

مرافقالعددالمركبz=a+biهوz̄=a-bi.لهذهالعمليةخصائصمهمةفيتبسيطالمقاماتالمركبة.

القيمةالمطلقةللعددالمركب

القيمةالمطلقةللعددz=a+biهي:|z|=√(a²+b²)

وهيتمثلالمسافةمننقطةالأصلإلىالنقطة(a,شرحدرسالأعدادالمركبةb)فيالمستوىالمركب.

تطبيقاتالأعدادالمركبة

تستخدمالأعدادالمركبةفيالعديدمنالمجالاتمثل:-الهندسةالكهربائية-معالجةالإشارات-ميكانيكاالكم-الرسوماتالحاسوبية

خاتمة

الأعدادالمركبةتوسعمفهومنظامالأعدادالحقيقيةوتوفرأداةقويةلحلالمعادلاتالتيليسلهاحلولفينظامالأعدادالحقيقية.فهمهايتطلبإدراكالعلاقةبينالجزأينالحقيقيوالتخيليوكيفيةالتعاملمعهمفيالعملياتالحسابيةالمختلفة.

قراءات ذات صلة

من هو رجل المباراة في مباراة الأهلي اليوم؟

جدول دوري أبطال أوروبا 2023–24كل ما تحتاج معرفته عن البطولة الأوروبية المرموقة

جدول مباريات الدوري المصري الممتاز 20232024كل ما تريد معرفته عن مواعيد المباريات

جدول مواعيد مباريات الأهلي في الدوري المصري الممتاز

نتيجة الثانوية العامة 2024كل ما تريد معرفته عن التنسيق والقبول الجامعي

جدول مباريات دوري أبطال أفريقيا 2023كل ما تحتاج معرفته عن البطولة القارية

جدول ترتيب هدافي الدوري الإسبانيمن يتصدر المنافسة هذا الموسم؟

جدول ترتيبات الدوري المصريتحليل شامل لأداء الفرق في الموسم الحالي